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ABSTRACT 

There are many fluid flows where the onset of transition can be caused by different 
instability mechanisms which compete in the nonlinear regime. Here the interaction of 
a centrifugal instability mechanism with the viscous mechanism which causes Tollmien- 
Schlichting waves is discussed. The interaction between these modes can be strong enough 
to drive the mean state; here the interaction is investigated in the context of curved 
channel flows so as to avoid difficulties associated with boundary layer growth. Essentially 
it is found that the mean state adjusts itself so that any modes present are neutrally 
stable even at finite amplitude. In the first instance, the mean state driven by a vortex 
of short wavelength in the absence of a Tollmien-Schlichting wave is considered. It is 
shown that for a given channel curvature and vortex wavelength there is an upper limit 
to the mass flow rate which the channel can support as the pressure gradient is increased. 
When Tollmien-Schlichting waves are present then the nonlinear differential equation to 
determine the mean state is modified. At sufficiently high Tollmien-Schlichting amplitudes 
it is found that the vortex flows are destroyed, but there is a range of amplitudes where 
a fully nonlinear mixed vortex-wave state exists and indeed drives a mean state having 
little similarity with the flow which occurs without the instability modes. The vortex and 
Tollmien-Schlichting wave structure in the nonlinear regime has viscous wall layers and 
internal shear layers; the thickness of the internal layers is found to be a function of the 
Tollmien-Schlichting wave amplitude. 

This research was supported by the National Aeronautics and Space Administration under NASA Con- 
tract Nos. NASI-18107 and NAS1-18605 while the second author was in residence at the Institute for 
Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, 
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$1. Introduction. 

Our concern is with the strongly nonlinear interaction of large amplitude Tollmien- 
Schlichting waves and Giirtler vortices in curved channel flows. Interaction problems of 
this type are relevant to many flows of practical importance where viscosity and centrifugal 
effects combine to stimulate travelling wave disturbances and stationary vortices. The most 
obvious examples are the flow driven by a steady pressure gradient in a curved duct and the 
flow over a laminar flow aerofoil, see Harvey & Pride (1). In the latter problem, a question 
of fundamental importance is whether the presence of finite amplitude Giirtler vortices and 
Tollmien-Schlichting waves and their consequent interaction cause the premature onset of 
transit ion. 

Here, because of the difficulties associated with boundary layer growth, we concentrate 
on fully developed curved channel flows driven by azimuthal pressure gradients. We shall, 
however, indicate the probable relevance of our calculations to the external flow situation. 
The interaction which we consider is strong enough for the Tollmien-Schlichting waves 
(hereafter referred to as TS waves) to have an 0(1) effect on the steady vortex flow which 
exists in the absence of the waves. Likewise this 0(1) correction to the vortex state has 
an 0(1) effect back on the wave so that the vortex and the TS states are strongly coupled. 
Remarkably this strong interaction occurs at  extremely small TS amplitudes; it is the large 
inertial effects associated with both the TS wave and Giirtler vortex which generate this 
large response. 

The basis for the expansion procedure to describe the interaction is that given by 
Hall & Lakin (2) for small wavelength Giirtler vortices in growing boundary layers. The 
nonlinear states considered in that paper have the ‘mean’ state driven by the vortices 
which are themselves trapped between viscous shear layers in which the vortex amplitude 
decays to zero as a solution of a nonlinear Airy equation. We shall apply this theory to 
channel flows but with the complication that the mean state is simultaneously driven by 
the vortices and the TS waves. The ‘core equation’ to determine the mean state has a 
significantly different structure in the presence of a TS wave. An important consequence 
of this change in structure is that vortex states cannot exist beyond a critical TS wave 
amplitude. Before discussing our problem in more detail, we shall give a brief review of 
related work on TS-Giirtler vortex interactions. 

Most of the previous work in this area has in fact been in the context of fully-developed 
flow. However, one of the earliest papers, Nayfeh (3), did consider the external flow case 
but there the amplitude of a linear Giirtler vortex was simply imposed and the linear insta- 
bility of the resulting flow to an infinitesimal TS wave was considered. The linear Giirtler 
vortex was obtained by ignoring boundary layer growth; since the vortex wavelength cho- 
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sen was comparable with the boundary layer growth rate we know from the work of Hall 
(4) that the eigenfunction used by Nayfeh does not satisfy the linear stability equations. 
Furthermore, the amplitude of a Giirtler vortex must be calculated from the Navier-Stokes 
equations using the approach of Hall (5), Hall (6) or Hall & Lakin (2). Having made the 
simplification discussed above, Nayfeh found that small vortices have a large effect on TS 
growth rates. Later Malik (7)  repeated Nayfeh’s calculations and showed that Nayfeh’s 
conclusions were incorrect and indicated a numerical error in Nayfeh’s work. 

Subsequently, Bennett & Hall (8)  investigated the linear instability of nonlinear vortex 
flows in curved channels to both 2D and 3D TS waves. Here the nonlinear states were 
found by solving the full Navier-Stokes equations numerically. The particular TS waves 
imposed on this flow correspond to the lower branch of the neutral curve. This type of TS 
wave is particularly relevant in external flows, Smith (9,10), so it is of course important 
to understand how vortex flows influence this mode even though more unstable modes 
at  finite Reynolds numbers can occur in channel flows. Bennett & Hall (8)  showed that 
vortex flows with wavelengths comparable with the channel width can have a significant 
destabilizing effect on lower branch TS waves. In a subsequent paper Bennett, Hall & 
Smith (11) extended the work of (8 )  to the nonlinear stage where the TS wave has an 
0(1) effect back on the vortex flow. The vortex wavelengths are then comparable with 
the channel width and the flow can only be determined by numerical calculations. The 
somewhat Iimited number of calculations performed in (11) showed that nonlinear effects 
prevent the exponential growth of the TS amplitude and that a supercritical bifurcation 
to a mixed TS-vortex state occurs. 

If the vortex wavelength is taken to be long (in fact comparable with the wavelength 
of the TS wave), a different type of interaction takes place. In this case, Hall & Smith 
(12) show that initially the interaction is governed by amplitude equations appropriate 
to a resonant triad. The equations were found to possess a finite time singularity whose 
structure indicated a more nonlinear state. The latter state is governed by a linear partial 
differential equation for the vortex coupled to an integro-differential amplitude equation 
for the TS wave. It was again found, even in the more nonlinear state, that a finite 
time singularity exists. In a related paper for channel flows, Hall & Smith (13) showed 
that the vortex velocity field develops a shorter spanwise scale where certain types of 
singularity occur. Thus, it is important to understand the vortex-TS interaction at  smaller 
wavelengths comparable to or smaller than the channeI width since there is some evidence 
from the work of Hall & Smith (13) and some related boundary layer calculations of Hall 
& Smith (14) that these shorter scales are induced by an interaction involving longer 
wavelength vortices. 
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Finally, in our discussion of previous work we mention the calculation of Daudpota, 
Hall & Zang (15). This interaction problem concerns small amplitude TS waves and 
vortex states at finite Reynolds numbers at a value of the curvature at which both modes 
are equally likely. The results of that paper suggest that Gbrtler vortices can have a 
significant effect on the equilibration of TS waves. 

In the present paper, we consider the interaction of small wavelength Giirtler vortices 
and lower branch TS waves. Our reason for concentrating on these limits is easily explained 
by reference to the corresponding external flow case. There it is well known that Gbrtler 
vortices set up in an experiment conserve their wavelength as they move downstream. 
Since the boundary layer itself thickens it follows that the local nondimensional vortex 
wavenumber becomes large as the vortex develops downstream. Thus, the small wavelength 
limit in the external Gbrtler problem is appropriate to the ultimate development of any 
initial fixed wavelength vortex. Similarly, we concentrate on lower branch TS waves since 
they are the most unstable modes which can be described by formal asymptotic methods. 

Since there has been no previous work on small wavelength large amplitude vortices in 
channel flows, we extend the work of Hall & Lakin (2) to fully developed flows. We use the 
condition of constant mass flow rather than constant pressure gradient and obtain curves 
of mass flow against pressure gradient in the presence of vortices for different values of the 
curvature. We show that when vortices develop they cause unusually large increases in the 
pressure gradient to be induced in order to produce a small increase in the flow rate. 

We then consider the effect of a small amplitude TS wave on the above flow structure. 
Initially the vortex wavelength is taken to be comparable with the channel width so that 
the interaction equations of Bennett et al. (11) apply. By taking the further limit of 
small vortex wavelength, we derive an asymptotic description of a fully nonlinear flow 
with ‘mean’ part simultaneously driven by TS waves and Giirtler vortices. 

We show that vortices can only exist in a finite region bounded by thin shear layers 
whose structure depends on the size of the TS wave amplitude. We will see that supercrit- 
ical states exist in the presence of TS waves and that, at  a given Taylor number, several 
equilibrium states with different TS amplitudes and frequencies are possible. We shall 
show that there is an upper bound for the TS wave size at  a given Taylor number. The 
procedure adopted in the rest of this paper is as follows: in $2 we formulate the nonlinear 
equations governing 3D flows in curved channels. In $3 we solve these equations for strongly 
nonlinear vortex flows and in $4 we extend this to allow for the simultaneous presence of 
TS waves. Finally, in $5 we discuss the results of $3,4 and draw some conclusions. 
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§Z. Formulation of the problem. 

Consider the flow of a fluid of density p and kinematic viscosity v in a curved channel 
with walls defined by r' = R1 and r' = R2 (> R1) with respect to the usual cylindrical 
polar co-ordinates (r' ,  e', 2'). We assume that the curvature of the channel 6 = (R2-R1)/R1 
is small. The basic steady flow considered is that of an azimuthal velocity field driven by 
an appropriate pressure gradient. It is convenient to define variables x ,  y ,  z,  t by 

RIB' r' - R1 z' uot' 
, z =  , t =  (2.1) R2 - R1 R2 - R1 Re(R2 - R1) ' X =  9 Y =  

R2 - R1 

where Uo is a typical azimuthal velocity, t is a dimensionless time and Re E Uod/v is 
the Reynolds number. Writing the velocity field scaled on UO with respect to ( x ,  y ,  z)  as 
( u , v , w ) ,  scaling the pressure on pU: , and substituting into the continuity and Navier- 
Stokes equations yields the system 

1 au bU av aw 
-- + - + - + - = 0, 
F a x  F a y  az 

26 av  1 a p  6212) - N U + -  
Re ReF2 a x  F a x  F '  

a 

(2.24 

(2.26) 

26 au ap 6U2 
- = N v  - -, 

Re R e F 2 a x  d y  F 
(2.2c) 

d 

where 

I F = 1 + b y ,  

and the operators V2 and N are given by 

1 a2 a2 a2 6 a 
V 2 E  -- +-+-+-- F 2 a x 2  d y 2  az2 F a y '  

u a  a a 
F a x  dy az  

+ v - + w - .  N E  _ _  

(2.2d) 

( 2 . 3 ~ )  

(2.36) 

( 2 . 3 ~ )  

The Taylor number T is given by T = 2Re26, and here we take this to be an O(1) 
parameter. Dean (16) demonstrated that instability of the basic flow given by 

D 
= +Y - Y2) + 0 ( 6 ) ,  

(where D is a constant) occurs first for 0 ( 1 )  axial wavelengths and at  an 0 ( 1 )  Taylor 
number so that here the Reynolds number is large. 
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We now consider the case of fully nonlinear small wavelength Giirtler vortices in the 
channel and suppose that the mean flow correction to the basic flow in the presence of the 
vortices is as large as the basic flow itself. 

$3. The case of a fully nonlinear Gortler vortex in the channel. 

Here we follow the ideas of Hall & Lakin (2) who studied the problem of fully nonlinear 
vortices in an external growing boundary layer. The necessary scalings for the present 
problem follow those given in that paper with a related flow structure. This structure 
consists of a vortex activity region (I) defined by (0 <)y1 < y < y2(< 1) say, with thin 
layers ( IIa ,b)  surrounding y = yl and y = y2 which act to smooth out the algebraically 
decaying vortices in the central region. The structure is completed by regions ( I l l a , b )  
defined by 0 < y < yl and y2 < y < 1 in which, to leading order, the flow is merely driven 
by a constant pressure gradient with no vortex present. 

Unlike Hall & Lakin (2), here our flow velocities ( u , v , w )  are independent of x and so 
we seek steady solutions which assume the forms 

in the notation of (2.2). Substituting (3.1) into the system (2.2) and ignoring small terms 
yields, at leading orders, the governing equations 

= 0, 
av aw -+- a y  az 

( 3 . 2 ~ )  

(3.2 b) 

( 3 . 2 ~ )  

(3.2d) 

We look for a vortex with small axial wavelength /? << 1, and use the results of (2) that 

dW aw d P  a2w a2w v- + w- = -- +-+- aY az  az ay2 dz2 - 

the Taylor number T expands in the manner 

and that in the main vortex activity region (I) the appropriate velocity and pressure 
expansions take the forms 

u = Go + pa, + . . . + {PE(U,l+ pu,’ + . . .) + p2E2(u; + . . .) + . . . + c.c}, (3 .44  I 
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v = {p-lE(V: + pv; + . . .) + E"V0" + . . .) + . . . + c.c} ,  (3 .4b)  

w = {E(Wfj + pw,' + . . .) + pE2(w: + . . .) + . . . + c .c} ,  (3.4c) 

P = p - 4 p ~  + p-'fil+ . . . + {p-'E(P,' + PP,' + . . .) + E2(Pt  + . . .) + . . . + c . c } ,  (3 .4d)  

where E 3 exp(iz/P) and c.c denotes the complex conjugate. Notice that in the absence 
of the vortex the flow reduces to the steady state with V = W = P = 0 and U = f(y-y2). 

The expansions (3 .4 )  are substituted into (3 .2 )  and powers of p are equated for each 
Fourier coefficient. The zeroth order equations for the vortex in the core are 

d iio - dV; + iwfj = 0, uo' + v;- = 0, 
dY dY 

( 3 . 5 4  b) 

V: + ToUiiio = 0, 

and consistency of (3 .5b ,c )  flow in the core 

iPt + wfj= 0, (3.512, d )  

( 3 . 6 ~ )  

Further, the vortex amplitude IV:l follows from the x- momentum equation (3.2b) and 
satisfies 

Consequently, the equation ( 3 . 6 ~ )  for the mean flow fixes 
gives 

where a is a constant and then (3 .6b)  yields the condition 

(3.6b) 

the vortex. Integrating ( 3 . 6 ~ )  

( 3 . 6 ~ )  

(3 .6d)  

where b is another constant. As IVO].l2 is non-negative, the extent of the vortex activity 
region is defined by IV:l = 0. If y = y1 and y = y2(> yl) are these edges of activity then 

for j = 1,2. The thicknesses of the thin shear layers centered on y1 and y2 are found by 
balancing diffusion across the layers with convection in the streamwise direction and are 
found to be O(p4). Hence, in the upper layer, we define the 0(1) co-ordinate e by 

Y - Y2 E = p f .  
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t 
1 

I The expansions in this region (116) are then 

I 
u = iio + @E1 + pii2 + p k ,  + . . . + {pfE(Uo1+ p k h +  . . .) + pW(Uo2 + . . .) + . . . + c.c},  

( 3 . 9 4  

(3.9c) 

v = {p-hqVol+ pb51 + . . .) + p%E2(Vo2 + . . .) + . . . + c.c}, (3.9b) 

w = {P-+E(Wol+ pfw,, + . . .) + PE2(WO2 + . . .) + . . . + c.c},  
10 - P = p-450+p-Tjjl+ . . . + { P - $  E(Pol+PgPll+ . . . )+p i  E2(PO2+.  ..)+.. .+c.c} .  (3 .9d)  

The governing equations are very similar to those presented in (2) and so we will merely 
summarize the important features of their solutions. The leading order terms in the mean 
flow expansion satisfy 

d2Go d2E1 ---- - 0, - 
de2 dc2 

and matching with the vortex activity region yields 

The governing equations for (Uol, Vol) are found to be always consistent, but those for 
U11 and VI1 admit a solution only if a certain solvability requirement is met. This condition 
is obtained on consideration of higher order mean flow terms and leads to a problem (which 
is a particular form of the second Painlevii transcendent) given by 

2 dTo(a + 2Y2) 
% + E [  dc2 3 ( U + 2 Y 2 )  1 - "-1 3 VOl = ,vollvo112 - 3 f VOl , 

where f is some constant whose actual value is not required here. This equation has been 

shown (17) to have a solution for which 

lVol12 + 0 as c -+ 00. 

Thus the fundamental terms Uol and Vi1 decay exponentially to zero as c + oo and 
so the vortex is constrained to lie below y2. A completely similar analysis holds for the 
lower shear layer (11a) at y = y1. We see that the mean flow terms play an essentially 
passive role in these shear regions, in as much as that the leading order mean flow term 
and its derivative must be continuous across the shear layers. Outside the vortex activity 
zone in regions (Illa, 6 )  we have 

u = ii + opt), 
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and (3.6b) simplifies to the governing equation dvl &E - - -D. 

Summarizing at  this point then, we now have (given To) sufficient information so as 
to enable us to determine the shear layer positions y1 and y2 and the constants a,b in 
(3.6c, d). The leading order mean flow quantity ti is governed by the following constraints 
and conditions: 
Zone ( I ) .  

Zones (IIIa, b) . 
Here 

d2 ti -- - -D, 
dY 

(3. loa) 

(3.10b) 

and ii and % are continuous across the shear layers (IIa,b) at y1 and y2. From (3.7) we 
also have 

(3.11) 
1 1 

Dyl + 4- =Dy2'r To@ + 2Y2) ' 
and no-slip conditions ii = 0 on y = 0 , l  are imposed. 

The constant D is not determined as yet and we choose it so that the non-dimensional 
mass flux across the channel is kept constant for varying values of To. We take the nor- 
malization such that ti = y - y2 in the absence of any vortices so that D is k e d  so 

1 
tidy = - 

6' 
(3.12) 

We used a simple iterative technique to solve the problem (3.10), (3.11) and it was 
found that the method was most easily formulated in terms of the quantity TOO2. Given 
this value, a guess was made for the shear of the mean flow at the lower wall y = 0 and 
(3.10b) was integrated to the position y1 where TOG% = 1. Continuity of the mean flow 
across the shear region (IIa) yielded a value of a on using (3.10a), y2 was then determined 
from (3.11) and finally (3.10b) integrated to y = 1. If a( l )  did not vanish, the assumed 
shear a t  the lower wall was adjusted until this condition was met. Finally, D was fixed so 

as to satisfy (3.12). 
The results of these calculations are shown in figures (1) & (2). The work of Hall ( 5 )  

demonstrated that on the basis of linear theory a vortex can exist for To = T, = 6fi. 

Not surprisingly, our computations revealed that a solution of the problem (3.10)-(3.12) is 
only possible for To > T,. Also, no solutions occur for TO > 32 and, indeed, as To -+ 32, 
the mass constraint (3.12) implies that the pressure gradient D + 00. Figure (1) shows 
the positions of the shear layers y1, y2 as a function of To and as To -+ 32 these positions 
migrate to the edges of the channel, whereas as TO tends to the linear value T, they merge 
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1 at y = ~ ( l  - 5). Figure ( 2 )  illustrates the dependence of the Taylor number To on the 
pressure gradient D. 

The normalization we have used to determine D in our calculations thus far is that to 
ensure a constant non-dimensional mass flow rate. In a realistic experiment, it would be of 
more interest to determine the dimensional mass flow rate as a function of the total pressure 
drop along the channel. On recalling the non-dimensionalizations introduced previously, 
we may easily translate our results so that they may be interpreted in dimensional terms. 
Figure ( 3 )  illustrates the dependence of the dimensional mass flow rate on the pressure 
drop along the channel. In the absence of any vortices, we know that the mass flux is 
proportional to the pressure drop, and it is seen that as vortices develop, a large increase 
in pressure drop is required to produce a small increase in the flow rate. The precise broken 
curve on figure (3) which is actually followed in any particular experiment is determined by 
the physical parameters of that experiment, and we see that in each particular case there 
is a maximum flow rate that can be achieved in the presence of the vortices, irrespective 
of the size of the pressure gradient. 

Lastly in this section, we see that two asymptotic regimes naturally arise here. Firstly, 
for TOO2 = 2 4 4 +  S,, 0 < 6, << 1, i.e. returning to the case of very small vortices, we find 
that 

y1,2 = :(I - 5) 3 4 6 )  + ..., 
2 

a =  ($-I) +++..., 
and To = 6f i  + ( 6 , / 2 )  + . ... These results imply the scalings required for a weakly 
nonlinear analysis of the vortices along the lines of Hall (18). 

Secondly, for q5 TOO2 >> 1, we obtain 
. 

1 2f  
y1= -+ -+..., + 4: 

This demonstrates that To < 32 in all cases, a restriction which is a direct consequence 
of the constant non-dimensional mass flow constraint. As To approaches this upper bound 
the vortices occupy nearly all of the channel and the mean flow profile takes a square root 
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form everywhere except for thin regions at the sides of the channel. If the non-dimensional 
flow constraint is relaxed and replaced by a constant pressure gradient requirement, the 
vortex may then persist for arbitrarily large values of To. 

The effect on the vortices of introducing TS waves into the channel is now investigated 
and the scalings are chosen so as to ensure a strong interaction between the vortices and 
the waves. 

$4. Strong interactions between small wavelength Gortler vortices and lower 
branch TS waves. 

We now extend the analysis presented in the last section to the case when TS waves of 
azimuthal wavenumber O ( R e - i )  are also present in the flow. The size of the TS wave is 
chosen to be such that the nonlinear terms in (2.2) arising from interactions of the TS wave 
with itself, are of comparable size with the leading order vortex terms. These interactions 
are most important in the core of the flow away from the viscous wall layers in which the 
TS wave adjusts to the no slip conditions required at the walls. 

Bennett et al. (11) examined the problem under consideration here but took the vortex 
and TS wave to vary on an 0(1) scale in the z-direction, whereas we choose to study the 
case of a small axial lengthscale. The TS wave is assumed to be proportional to 

E exp [ i ( CYXE - /' y d f ) ]  , 

where the wavenumber CY and the slowly varying frequency fl are real, and where, antici- 
pating the ensuing analysis, it is found convenient to define the small parameter E = Re-$. 
Away from the viscous wall layers at  y = 0 and y = 1 we follow (11) and consider velocity 
and pressure fields which take the forms 

u = u0 + (&E + c.c) (I + o ( € ~ ) )  , 
c7vO 

v = - 2 + ( c 7 v l ~  + c.c) (I + 0 ( € 7 ) )  , 
c7wO 

w = - 2 + ( E 7 w 1 ~  + c.c) (1 + 0 ( ~ 7 ) )  , 
14 

E Po 
2 

p = - 0 2 ~ ~  + - + (c8plE + c.c) (1 + O(c',> , 

( 4 . 2 ~ )  

(4.2b) 

( 4 . 2 ~ )  

(4.2d) 

where the unknown quantities are independent of x. 
Substitution of these forms into the governing equations (2.2) yield that a t  leading 

orders the vortex and TS parts of (4.2) satisfy 

avo awo -+-- - 0, 
ay az 

10 

(4 .34  



t 

and 

aw; a W *  
+2 [ (-iaulw; + t l l -  aY + + )  aZ 

awl awl 
a y  az 

i C r U l +  - + - - - 0, 

au0 auo 
dY 

a P 1  

a Y  ’ 
dP1 
az 

iCrUOUl+ - w 1 +  -w1 az = 0, 

2CrUOWl = -- 

2CYuow1= --. 

(4.3b) 

(4.3c) 

(4 .44  

(4.4b) 

(4.4c) 

(4.4d) 

Here the superscript * on a quantity denotes the complex conjugate. 
We note that the TS interaction appears at leading order in (4.3c,d). Bennett et al., 

(11), examined the problem with O(1) z-variations but we analyse the limit $ + 00 to 
obtain an asymptotic description of the long wave-short wave vortex-TS interaction. 

If p << 1, but of sufficient size that subsequent expansions in ascending powers of /3 do 
not disrupt the leading order equations (4.3, 4.4) we find that on a z-lengthscale of O(p)  
the leading order vortex and TS quantities assume the forms 

u o =  G o +  . . . + { p (  u:+ ...)cos(;)}+{p2( u;+ ...)cos(?) +...}, (4 .54  

w0 = { p- l  (Vt + . . .) COS (i) } + { (V: + . . .) COS (F) + . . .) , (4.5b) 

wo = { (wi + . . .> sin (i) } + { p (w: + . . .> sin ( F) + . . .) , (4.5c) 

po = p - 4 ~ 0  + . . . + [ p-’ (Pi + . . .) cos (i) } + { p2 (P: + . . .) cos ($) + . . .) , (4.5d) 

11 



where 

u1 = p -2  uo + . . . + { p- u1 + cos ($) +...}, 

z11 = p-v:  + . . . + { p-lvJ cos (;) + ...), 

w1 = pW0 + . . . + { Wl sin (;)+ ...}, 

p1 = p- Po + . . . + { pP1 cos ($)+ ...}, 

( 4 . 6 ~ )  

(4.6b) 

( 4 . 6 ~ )  

(4.6d) 

I1 the unknowns are function of y. 

I We substitute these expansions into (4.3) & (4.4), together with the relevant expansion 
T = Top-' + . . . for the Taylor number. On equating powers of p associated with each 
Fourier coefficent we get the solution set I 

where the displacement A and pressure term 5 are to be found. Further, we find that 

Additionally, the vortex terms Ut, Vo]., W t  satisfy 

dV,' -+w,l=o, 
I dY 

(4 .94  

(4.9b) 

and the mean flow term Eo satisfies 
I 

Now (4.9b,c) are consistent only if 

(4.9d) 

(4.10) 

where we have put X = 8a2(AI2. 
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The TS-vortex interaction requires that the mean flow satisfies (4.10) and then (4.9d) 
fixes the vortex. The TS wave is governed by the solutions (4.7, 4.8) and is fully deter- 
mined by considering the wall layers, see below. The consistency condition (4.10) is a 
generalisation of (3.6a), the additional term stemming from the presence of the TS wave. 
However, a major difference in the solutions of these two equations exists. Previously, for 
(3.6a), given ti0 at  some point y* say, the solution is uniquely defined, whereas now we 
have 

2x 
(4.11) 

with a consequent ambiguity in the solution. This phenomenon will be found to play a 
crucial role; for the present we take the negative sign in (4.11) since when A + 0 this 
retrieves the analysis of $3. 

We may integrate (4.9d) once to obtain 

where b is a constant and, as in the previous section, we expect the vortex activity to be 
concentrated in a region (I) lying between y1 and y2 say. The condition that IVtl 0 at  
these positions together with (4.11) yields the relationship 

5 [EO - 4 p ] ' = u '  = D(yl - y2). (4.12) 
2x u=u1 

We anticipate shear layers at  yl and y2 as before, again of thickness 0(/3:) and which 
we examine now. 

$4.1. The shear layers. 

2 In the shear layer (Ira) centred on 91, we define the O(1) co-ordinate = / 3 - ~ ( y  - yl) 
and the expansions (4.5) & (4.6) are modified to give 

(4.13 a) { uo = u: + P i 4  + pu2 t + P f 4  + . . . + pf (UOl + PkJl l+  . . .) cos (;)} + . . . , 

vo = p- i  (VOl + P%VI, + . ..) cos (;)} + . . . , 

(woi + pgW11+ . . .) sin (;)I + . . . , 

(4.13 b)  

(4 .13~)  

(4.13d) 

I 
wo = { 

Po = P- 4 t  Po + P-"Pl lo t + - * + (p-2 (Po1 + P f P l l +  . . .) cos (;)) + . . . , 
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and 

u1 = p- 2 t  Uoo + p-Wol ' t  + . . . + { p-t (Ulo t + p%Ull t + . . .) COS (;)I + . .. , 

v1 = p - 2 V i  + @-$Vi  + . . . + [ p-t  ( V i  + pgVll t + . . .) cos (;)I + . . . , 

+ . . .) COS (i)} + . . . . 

( 4 . 1 4 ~ )  

(4.14b) 

+ pzwll a t  + . . .> sin (;)I + . . . , (4 .14~)  

PJo + (4.14d) 

These forms follow from (4.5)-(4.11) and we substitute these expressions 
(4.4). As in the previous section, it is found that the mean flow terms uo,ul t t  

into (4.3) & 
satisfy 

A solvability condition for the fundamental vortex term Vi1 is derived by following the 
procedure given in $3 and determining circumstances under which the equations governing 
U11 and VI1 admit a solution. The algebraic manipulation needed now is more complicated 
than before because of the presence of the TS wave. However, eventually we find that 

where pi = and f is some constant. Again, we have an unscaled form of the 
dv Y1 

second PainlevC transcendent, and the solution has the desired property that V& + 0 as 
c -+ -00 and V& = O((i)  as 6 00, as long as 

( 4 . 1 6 ~ )  

An entirely analogous analysis is appropriate for the shear layer ( I Ib )  positioned at y = 

y2 and the resulting PainlevC problem is precisely (4.15) but with p1 replaced throughout 
by p2 = . Again, the fundamental vortex term V& decays exponentially as we move 
away from region ( I )  if 

va 

(4.16b) 

The conditions (4.16) may only be checked by numerical computations and so at  this 
stage we assume that they hold. The fundamental terms Ulo, . . . , Plo associated with the 
TS wave in expansions (4.14) are expressible in terms of the vortex coefficients Uol,. . . , Pol. 

TOPE + D(XPX - 1) < s, E 
P2(1 - XP;) 

t t 
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I 

The exponential decay of these latter terms imply a similar behavior for the former and 
so outside regions (I) & (IIu,b), the implied velocity and pressure fields develop as 

A - 
uo = iio + . . . , u1 = p-23: + . . . , (4.17a, e) 

uo = o+ . . . , u1 = p-29: + . . . , 
w o = o +  ..., w1=pwo - t  +..., 

(4.174 f 

(4.17c, s) 
A 

po = p-450 + . . . , p 1 =  p- 2 ^ t  Po + ..., (4.17d, h) 

to leading order. We find that, as in regions ( I I Iu ,b )  examined in §3, the mean flow 
A 

quantity Eo is simply given by 

-- - -D, d2 i o  
dY 

and here the TS parts Uo - t  , Vo - t  satisfy 

( 4 . 1 8 ~ )  

(4.18b) 

Finally, to complete the flow structure which thus far has been identical to that given 
in 53, we add wall layers at y = 0, l .  In the layer at y = 0, we define the 0(1) co-ordinate 
by y = c2Y and the fluid velocity and pressure expand as 

= -DX€ 7 + - €I4 (p-+,, + . . .) + (c8p-+lL~ + . . . + C.C.) (1 + o(2)) . 
2 

Substituting these expressions into the governing equations (2.2) leads to the usual 
lower branch TS wave eigenproblem, see for example (8) .  We find that the TS pressure 
on the lower wall Y = 0 is given by 

where X L  is the shear of the mean flow %-, at the wall, A i  is the Airy function (see (19)) 
and EL = -iiCl/(aX~) 8.  Consideration of the upper wall leads to a similar TS pressure at 
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y = 1 and using equation (4.7~) for the leading order TS pressure across the whole of the 
channel, we finally obtain 

(4.19) 

as the eigenrelation to determine the neutral wavenumber a and frequency !I. In this 
formula, Xu is the shear of the mean flow at  the upper wall and Eu = - i+ ! I / (aXu) i .  

We now have sufficient knowledge so as to completely specify the problem. In the core 
region the leading order mean flow satisfies (4.10) and (assuming that (4.16u, b) hold) has 
continuous first derivative at the shear layers y1 and y2. These shear layer positions satisfy 
(4.12) and outside the core the mean flow is determined by (4.18~). The imposition of zero 
velocity conditions at  the walls now (in principle) yields the complete mean flow across 

the pressure gradient D so as to ensure constant non-dimensional mass flux and, finally, 
(4.19) yields the wavenumber a and frequency R of the TS wave. 

The problem is then easily formulated in terms of the parameter groupings TOO2 and 1. 
If we write the mean flow in region (Illu), (where (4.18~) holds) as 

I the channel to within an arbitrary constant. This degree of freedom is fixed by choosing 

Analysis of the governing system reveals that it is convenient to define j\ by X = iT0. 

I 

I 
I 

Eo = D (@ y - g) (4.20~) 

where @ is an initial guess for the shear at  the lower wall, then the position y1 of the lower 
shear layer satisfies 

1 YI (4.20b) 

It has already been noted that an ambiguity appears to exist as to which sign to take 
in the expression (4.11). However, it is easily shown that if the positive sign is taken, 
then it is not possible for (4.10) to hold for any y > y1; consequently no upper shear layer 
could exist and the flow structure described would not be valid. We are thus led to the 
conclusion that the negative sign should be taken in (4.11), and if we write Eo = D f i ,  the 
solution of (4.11) is of the form 

where the constant is chosen to ensure continuity in ZO across y1. Equation (4.20~) together 
with (4.12) which now assumes the form 

(4.20d) 

L J u=u1 
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yields y2 and the mean flow and its derivative at  y = y2. For y > y2, we revert to the 
equation 

d2= 
-- uo - -D,  
dY 

which is integrated to the upper wall, y = 1. A simple Newton iteration is applied to the 
guess for the lower wall shear value @ to ensure that Ti0 vanishes at y = 1. The constant 
D is then fixed so as to give constant mass flux and (4.19) gives CY and R. 

The computations were initially performed by fixing TOO2 and then repeatedly solving 
the problem for increasing values of i from i = 0. We note that the limit i - 0 
corresponds to the problem considered in $3 where no TS wave is present. As in the work 
presented there, no solutions were found for TOO2 < 2 4 4 .  For small values of TOO2 up 
to approximately 80, as j, was increased the shear layer positions y1 and y2 monotonically 
increased and decreased respectively until a critical value of j, was reached (dependent 
upon TOO2) at  which stage y1 and y2 merged. At this point, the vortex disappeared and 
the problem reduced to that of a channel flow with a small TS wave imposed with the 
resulting neutral wavenumber and frequency CY = 5.7834, fl = 7.4016. This critical value 
of i, say IC is determined by demanding that equation (4.20b) with @ = 1 has a double 
root a t  y = yl. For j, > ic, the only solution which exists is plane Poiseuille flow with no 
vortex and a linear 2D-TS wave of arbitrary amplitude imposed. 

For values of TOO2 > m  80, a different behavior was observed. As j\ was increased, 
but prior to y1 and y2 merging, the solution apparently vanished, although solutions could 
again be generated in a neighborhood of iC(ToD2) defined in the previous paragraph. It 
was noted that as this breakdown position was approached the value S1 defined in ( 4 . 1 6 ~ )  
approached zero and, in turn, this ensures that the two possible values of (%) at y = yl, 
given in (4.11), merge. A detailed description of the results of these and the subsequent 

numerical solutions will be given in 55 where the significance of the results will also be 
discussed. 

at  which breakdown occurs 
as fi  is increased from zero and decreased from ic, at these values the Painlev6 problem 
(4.15) at y = yl clearly becomes inapplicable. The shear layer is again of thickness O(p%) 
but the fluid quantities now behave as 

If i,1(ToD2) and ~ B ~ ( T O D ~ )  are respectively the values of 

110 = uo t + p"1 P t  + p: (UOl+ pkJ1, + . . .) cos (;) } + . . . , (4.2 la) 

vo = p-r (VOl + p+v.1+ . . .) cos (;)} + . . . , { =  
{ wo = p-; (wol+ ptw11+ . . .> sin (i) ] + . . . , 

(4.21b) 

(4 .21~)  
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Po = p-4p: + p - v p ;  + . . . + p-F (Pol + pip11 + . . .) cos (p)) + - - - , (4.21d) 

and 

u1 = p-'UJ0 + 

U l  = p-2vL + 

Ulo + paUll + . . .) cos ( i)}  + . . . , 

V i + p i V A +  ...) COS (i)} + ..., 

+ p)Pll t + . . .) cos (i)} + . . . , 

( 4 . 2 2 ~ )  

(4.226) 

(4 .22~)  w1 = pw,t, + . . . + { p- i  (wi + p+w,t, + . . .> sin (i) } + . . . , 

pl = p - 2 ~ i o  + (4.22d) 

where these expansions follow from the solutions in region (I) and the breakdown assump 
tion 

TOP: = q 1  - 

from (4 .16~) .  We may retrieve a solvability condition for the fundamental vortex term V01 
which takes the form 

d2V0l To VOl 2 + - w o 1  = 128 (VA - f*) 9 dt2 2X 
(4.23) 

where f, is a constant, c.f. (4.15). This equation has a solution with V01 =O((i)  as 
( + 00 (which matches with the behavior of the quantity Vt in the core as y + y1) 

and exponential decay as ( _+ -00, and so the overall flow structure elucidated already 
remains valid. We note that at fi = j \B1 , iB2  the structure of the upper shear layer at y2 
is not affected (Le. S2 < 0 in (4.166)) and so the modified version of the second Painlev6 
transcendent is still the governing equation there. 

i4.2. A model problem for the case iBl < i < i B 2 .  

We conjecture that a new solution structure must govern the flow for the range of fi 
between the breakdown points. To examine this case, we considered the simpler model 
problem given by 

d2 U 
dY 

€2- = u [ & + i* ($) - , ( 4 . 2 4 ~ )  

(4.246) 
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with 0 < E << 1, u(0) = u(1) = U ( 0 )  = U(1) = 0 and where A is some constant to be 
determined. The relevance of this system to the problem at hand is thus; here we expect 
to have a central region where U = 0(1) and 

(4.25) 

(c.f. (4.10)), bounded by thin regions in which U changes rapidly to zero (c.f. shear regions 
(11)) and in the remainder of the channel 4 = A - y, (c.f. regions (IlIu, b)).  Numerical 
solution of (4.24) for E small but non-zero revealed the existence of a non-trivial solution 
for all 0 < until the critical value of this parameter was reached at which the 'shear 
layer' positions merged. This further suggests that a new structure for the asymptotic 
problem comes into play at some stage. 

For asymptotically small E, the structure proposed in 554, 4.1 is valid for this model 
problem for 0 < < ikl(T,) and i* > ik2(7'*), say where iB,(T,) and i i2(T*) are the 
breakdown points described before. For ikl(T*) < i, < ik2(T*), we suppose that a shear 
layer exists at y = y;, and that it has thickness O ( E ) ,  i.e., much thinner than the previous 
O ( E ~ )  size. If in the vicinity of y; we define the 0(1) co-ordinate $ by 

y - y; = 4 ( 4 . 2 6 ~ )  

then the functions U,u behave as 

u=uo+ ..., u = ($0 + €210 + * .  . , (4.263) 

locally. Here 40 Ay; - (yi2/2) is the value of u at y = y;, and we further suppose that 
just below y; we have $ = 41 G A - y; and U - 0. Putting (4.26) into (4.24) yields the 
system 

duo 41 
d$ 1+U;' 
-=- 

- d2 Uo = uo [; + i* ( $)2 - rpo ($91 . 
w2 

Equation (4.273) may be integrated once to obtain the solution 

(4.2 7a) 

(4.27b) 

ctu QW which satisfies $, $ 4 0 as Uo + 0. 

Uo --+ const. from ( 4 . 2 7 ~ ) )  where 
These equations admit a solution in which % --+ 4; (< 41) as t,b - 00 (and so 

. 
A + 1,414; - 40414; T* 

(4.28) 
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Further, we fix 9; to satisfy (4.25) so that 

y;-y2*=T [ u -  4 - 7  u 2 - -  
2 L  

1 
T* - + i, (9;)2 - 909; = 0, 

-91, (4.31) 

and across the central region u is governed by the solution of 

(4.29) 

(4.30) 
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I 
I 

vo = p-l (VO, + pv,, + . . . ) cos (;)}+... , I (4.323) 

(4 .32~)  

p4 (Po, + PP11 + . * .) cos (;) } + - , (4.32d) 

and 
u, = p -2  uo, t +. . . + UTo + pu,, t + . . .) cos (;)} +. . . , 

t { (  v1 = P vi0 + - * * + p-l VL + pv,, + . . .) cos (;)} + . . . , -2  t 

p1 = p- 2 t  Po0 + . . . + {(Pi + pP,t, + . . .) cos (;) } + . . . , 

(4.334 

(4.33b) 

(4.33c) 

(4.33d) 

instead of (4.13) & (4.14). After substituting these expansions into equations (4.3) & (4.4) 
and some manipulation, we find that ui  = const. (= 40 say, in the notation of the model 
problem discussion) and that we have the solvability problem 

t d4Vol d2Vol A du, 
dE4 2- de2 + VOl + ~ 0 4 0 ~ 0 1  = X(U0l + Po,- dE ’ -- (4.344 

(4.343) 

(4.3 4c) 

(4.34d) 

where V i  = iaAQo1 and 41 is a constant. To meet the boundary conditions required 
we need to specify that the vortex decays exponentially below yl so that Uol, Vol, Vlo t t 

t t 
O,% -+ -00. We additionally need % and the vortex terms to approach 
non-zero constants as -+ 00. That (4.34) admits such a solution is not immediately 
obvious, but this system bears close analogy with the model problem already discussed. 
If the full problem is derived with a small parameter multiplying the pressure in the axial 
momentum equation then, if this parameter is allowed to tend to zero, we recover the model 
equation. The structure of (4.34), together with the similarity with the model (4.24) and 

4, as 

21 



the subsequent solution of that system suggest strongly that a solution of (4.34) with the 
required behavior exists. 

If the mean flow quantity Go inside the activity region is defined by Go = DU as before, 
then here 

] 
and y2 is given by 

-41, y1-y2=& 2x [ U - j - q g  

U(Y1) = do, (4.354 

(4.35b) 

where (4.28) & (4.29) are to be satisfied with T, replaced by TOO2 in these equations. 

fi,, < fi < i ~ 2 .  The results and some discussion are now given in $5. 
This modified structure was then used to numerically solve the interaction problem for 

I 
55. Results and discussion. 

We now discuss the results for the strongly nonlinear TS-vortex interaction which can 
be found using the scheme outlined in the previous section. We note that the numerical 
scheme used allows for the possibility that the lower shear layer bounding the region of 
vortex activity to be either of thickness O(p%)  or O(p)  depending on the properties of the 
core equation (4.10) at yl. 

In figure (4), we have shown the dependence of D on the Taylor number To for several 
values of fi = x/To which characterizes the size of the TS wave. We note that all the 
curves terminate on the line D = 2 at  which point there is no vortex activity and the flow 
reduces to plane Poiseuille flow with a superimposed two-dimensional TS wave of arbitrary 
amplitude. The wavenumber a! and the frequency n of course vary on each of the curves 
and on D = 2 a! and h2 have the linear neutral values for plane Poiseuille flow, namely 
a! = 5.7834, n = 7.4016. In figure (5), we have shown the development of two of these 
curves at higher values of To. The shapes of these curves are typical of the results we found 
for all fi, thus when To + 00, we have D + 00 but D/To + 0. 

In figure (6), we show the variations of the shear layer positions y1 and y2 with To for 
the cases of = 0.01 and i = 0.2. The values of yl which correspond to the Painlevd 
transition layer as opposed to the structure discussed in $4.2 are indicated by the part of 
the curve which lies between the crosses marked on figure (6). The values of y1 and y2 
coalesce when D + 2 in which case the basic state in the absence of the vortices is simply 
plane Poiseuille flow. The mean velocity profiles corresponding to figures ( 5 4 ,  (6ii) are 

, 
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shown in figure (7) for a few representative values of To. For = 0.2 vortices may only exist 
for To > 19.06 and the Painlevd shear problem at y1 switches to the other structure with 
a much thinner shear layer when TO = 21. In figure (7 i ) ,  for which To = 19.98 the mean 
flow has a continuous derivative at y1 and the overall profile is not much changed from the 
plane Poiseuille case To < 19.06. In figure ( 7 4 ,  To = 23.52 and the discontinuity in the 
derivative of the mean flow at y1 is clear now that the very thin shear layer structure has 
taken over. For even higher Taylor numbers (TO = 26.61 in fig. (7ii i))  this discontinuity 
becomes increasingly more marked. 

It should be stressed that figures (5) & (6) do not describe directly the bifurcation 
structure of a finite amplitude TS wave where To or D varies. In an experimental setting, 
the TS wave is often generated by a vibrating ribbon so that as it moves downstream its 
frequency is constant. The bifurcation picture for constant frequency TS waves can be 
deduced from figure (4) if the lines of constant R are plotted. However, it is easier to 
calculate the bifurcation curves by modifying the algorithm described in $4 to allow for an 
outer loop in which we can iterate on TOO2 to make R constant. 

In figure (8), we show the bifurcation pictures for five fixed frequency TS waves. We 
take alAl as a representative TS amplitude and show how this quantity varies with To for 
the frequencies chosen. We see that in each case there is a supercritical bifurcation to a 
finite amplitude mixed vortex-TS state. At the bifurcation point on the horizontal axis the 
TS wave has zero amplitude and the basic state is the fully nonlinear vortex flow described 
in section 3. 

Solutions for the nonlinear vortex state have been shown to exist only for Taylor 
numbers To < 32. Calculations performed for increasingly large values of R (curves for 
R = 1200 & 1600 are shown in figure (8)) suggest that for Taylor numbers To > 32 TS 
waves of arbitrarily small amplitude are possible. As 0 + 7.4016 there is a limiting 
bifurcation curve (dotted in figure (8) and labelled Cl) corresponding to the linear neutral 
frequency for TS waves in Poiseuille flow. We note that it is straightforward to show that 
for large To the amplitude of the TS wave on C1 is proportional to To. All the bifurcation 
curves lie to the right of C1 and joins the horizontal axis at a point 6 6  < TO < 32. 

Now let us turn to the physical implications of the above results. Firstly suppose that 
the Taylor number is fixed. If TO is less than the linear critical value 6 6 ,  then the only 
possible state is plane Poiseuille flow. If To lies in the range 6 8  < TO < 32, then there 
exists either a mixed TS-vortex state, a finite amplitude vortex state or plane Poiseuille 
flow. Since the mixed state bifurcates supercritically from the vortex state, it is presumably 
the only available stable solution of the vortex-TS interaction equations. In this Taylor 
number range, there is an upper limit to the size of the TS wave which the vortex flow can 
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tolerate. Thus, when C1 is approached the vortices decay and the azimuthal velocity field 
reduces to plane Poiseuille flow. Where C1 is crossed the vortex-TS interaction equations 
no longer determine the size of the TS wave which will then be fixed by a weakly nonlinear 
theory based on the Stuart-Watson method. Thus, in the Taylor number region where a 
strongly nonlinear vortex flow exists, the imposition of a TS wave of gradually increasing 
size ultimately destroys the vortex state and sets up a flow comprising plane Poiseuille 
flow and a two-dimensional TS wave. At Taylor numbers beyond 32, the range of values of 
alAl where a mixed vortex-TS flow can exist lies below the curve C1 of figure (8). Outside 
this region only plane Poiseuille flow is possible. Hence at  Taylor numbers greater than 32, 
finite amplitude vortices can exist only in the presence of TS waves. Thus, in this regime 
the TS waves are responsible for the existence of any vortices in the flow. 

Our results therefore suggest that experimentally there can be a significant difference in 
the response of the flow to a TS wave dependent on the wall curvature. At  relatively small 
curvatures, small amplitude TS waves will equilibrate to a size fked by its frequency. If that 
frequency is decreased, then the TS wave size increases until the vortex flow is destroyed. 
At higher curvatures no vortex flow (with the given prescribed wavelength presumably 
introduced by wall roughness or turbulence in an experiment) can exist unless a TS wave 
is also present. If the TS amplitude is decreased, the vortices are again destroyed. Hence, 
at  any Taylor number a sufficiently large TS wave introduced into the flow will destroy 
any vortex flow. 

It is of interest to note that the calculations suggest that no mixed vortex-TS state 
can persist at  Taylor numbers below the linear critical value of 6fi. The work of Hall & 
Smith (13,14) suggests that the vortex-TS interactions at  larger vortex wavelengths can, 
even without curvature, lead to singularities developing simultaneously in both time and 
the spanwise co-ordinate. Our results suggest that the transfer of energy is possible on 
smaller scales and so the results of Hall & Smith do not continue indefinitely. 
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FIGURE CAPTIONS 

Fig. (1). Positions of the lower and upper shear layers y1, y2 as a function of the Taylor 
number To. 

Fig. (2). Dependence of the Taylor number To on the pressure gradient D when the 
constraint of constant non-dimensional mass flux is imposed. 

Fig. (3). Graph to show the dimensional mass flow rate as a function of the pressure 
drop in a realistic experiment. In the absence of vortices the relationship is linear (solid 

determined by the physical parameters of the apparatus) which show that as the mass flux 
slowly rises an increasingly large change in pressure gradient is required. Indeed, for any 
particular case the possible values for mass flow rate are bounded above and these bounds 

I line). When vortices are present, one of the broken lines is followed (which of the curves is 

I are indicated for the lower two curves in the figure. 

I Fig. (4). Graph of the pressure gradient D against Taylor number To for a variety of 
values of fi = ~ C X ~ I A ~ ~ / T O .  The lines (1)-(10) each follow a path of constant i up to the 
point where ToD2 = 1000, and are given by (1) i=10-4, (2) i= (3) 5 x (4) 0.1, 
(5) 0.2, (6) 0.3, (7) 0.4, (8) 0.5, (9) 0.8 & (10) 1.0. The dotted line D = 2 corresponds to 
the problem where no vortices are present and the flow is plane Poiseuille with a linear TS 
wave of arbitrary amplitude imposed. 

I 

Fig. (5). The development of two of the curves of fig. (4) for larger values of TO. (i) 
I i = 0.01 (curve (2) in fig. (411, (ii) i = 0.2 (curve (5) in fig. (4)). 

Fig. (6). Position of the shear layers y1 and y2 as functions of the Taylor number To for 
the cases (i) A = 0.01, (ii) i = 0.2. The positions of y1 which correspond to the Painlevd 
shear layer problem lie between the crosses marked on the lower curves. 

Fig. (7). Mean flow velocity profiles for 
To = 26.61. The dotted lines represent the positions of the shear layers. 

= 0.2 when (i) To = 19.98, (ii) To = 23.52 & 

Fig. (8). Constant frequency curves in Taylor number/amplitude space. The values on 
each line are (i) R = 10, (ii) R = 25, (iii) R = 36.5, (iv) R = 1200 & (v) R = 1600. The 
dotted line (Cl) corresponds to the limiting case R - 7.4016. 

26 



- r - - - - r -  --I- 1 I 
0 0 0 0 0 ( 

0 03 (D Q (v I . - . 
0 

h 

. 
0 

27 

. 
0 

. 
0 0 

Lo 
N 

Lo 

n 
rl 
W 

I 



, 
I 

i 
I 

i 

I 
I 
I 

I 
! 
j 

I 
I 

1 
I 

1 
i 

1 
1 

1 
i 

28 



I 

I 
I 
I 
I 
I 
\ 

I 
\ 
I 
I 
\ 
\ 
\ 
\ 
\ 

I 
I 
i 
I 
I 
I 
I 
I 
I 
I 
\ 
I 
1 
I 
I 
I 
I 
I 
I 

\ 
\ 
\ 

\ 
\ 
\ 

\ 

\ \ I 

I I 

I I  
I /  
1 1  
' I  

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

\ 
\ 

I 

I I  
I 

I 
/ I  

I I  
1 1  
I 1  
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I. 
1 
I 
I 
I 
I 

7 
. a  a e . . 

x O  0 0 0 0 0 

29 

I 



3 * .-- 
0 

H 

‘ 0  
I C I  

i 
! 

+-- 

I 

0 
03 

0 
d- 

n 

30 



0 
CD 

0 
t- 

o cv 0 
0 

0 
00 

0 
CD 

0 
Q 

0 
(v 

C 

0 a 
d- 

31 



. -  
'e. X 

3 
3 . 

CY 
0 

10 
. 

0 
0 . 
c- 

Y U . .  
c 

32 



rl 
3r 

t u  

0 
N 

m 
c 

0 
c 

0 w 

M 

r- -- ---. - -r------- --- ------ --- 7 - - - - - - - 7 -  .i, 2 
0 
0 

0 0 0 0 0 cv 0 co CD I$ 

P 0 0 0 0 0 
a I a a a a 

I 

h 

33 



d 
h 

0 
c I I 

I n 

n 
\o i W 

M I I .: tu 
-----T---- -4-0 

0 
0 

0 

0 0 
4 N 

0 

---I------ - -I------- 
0 
Lo 

--7------- r-- ---.---- 
0 co a 

m m 8 8 

0 
0 
v-- 0 0 0 

! 
LE 

0 I N 

h 

34 



! ! 

c , m  

i 

I 
! ! 

. 
0 

i 
I 

I 

i 
! 

! 
! 

I 

I 

! 

I 
I 
! 

I 

! 

I 
I 

I 

! 

! 

! 
i 

i 

i 

! 

I 

i 
i 
I 

i 

i 
I 
i 
i 
I 

C 
C 

, C.- 

, I  
i o  

L- - 
Pi 

I 

10 
ju, 
i', 
I .  

C 

0 
In 

c! 
n 
.rl 

n 
b 

W 

W 

35 



I 1 
I 
i 1 

1 I 
I 
I 

! 

I 

I 
1 

! 
I 
I 

I 
I 
I 

i 

\ i I 

I 

c 
1 
0 

3 
3 

N 
. 

0 
Ln . 
v- 

0 
0 

a 

c 

h 

36 



1 

I 
i 
1 

1 
I 

i 
I 

I 

I 
i 
I 

I 
I 

I 

I 

I 

i 

I 
I 
I 

1 
I 

I 
i 

i 
i 
I 
i 

. 
c 

. 
0 

. 
0 

h 

w 

0 
w 

0 
w 

0 

m 

P 

I 
0 

N 

0 
0 

(u 

. 

0 
Ln . 
c 

0 
0 . 
c 

0 
Ln . 

n O .A 

0 

37 

i 



\ 

38 



Report Documentation Page 
1. Report No. 2. Government Accession No. 
NASA CR-181690 
ICASE Report No. 88-43 

ON THE GENERATION OF MEAN FLOWS BY THE INTERACTION 
OF GORTLER VORTICES AND TOLLMIEN-SCHLICHTING WAVES IN 
CURVED CHANNEL FLOWS 

4. Title and Subtitle 

3. Recipient's Catalog No. 

5 .  Report Date 
July 1988 

6. Performing Organization Code 

7. Authoris) 
Andrew P. Bassom and Philip Hall 

10. Work Unit No. 

505-90-21-01 

8. Performing Organization Report No. 

88-43 

9. Performing Organization Name and Address 
Institute for Computer Applications in Science 

Mail Stop 132C, NASA Langley Research Center 
Hampton, VA 23665-5225 

12. Sponsoring Agency Name and Address 

and Engineering 

National Aeronautics and Space Administration 
Langley Research Center 
Hampton, VA 23665-5225 

11. Contract or Grant No. 

NAS1-18107, NAS1-18605 

13. Type of Report and Period Covered 

Contractor Report 

14. Sponsoring Agency Code d 

17. Key Words (Suggested by Author(s)) 
vortices, Tollmien-Schlichting 
waves 

I 

15. Supplementary Notes 
Langley Technical Monitor: Submitted to Studies in Applied 
Richard W. Barnwell Maths. 

18. Distribution Statement 

01 - Aeronautics (General) 

Unclassified - unlimited I 

Final Report 

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 

Unclassified Unclassified 40 

16. Abstract 

22. Price 

A0 3 
i 

I I 

NASA FORM 1626 OCT 86 
1 I 

I 
I 
I 

NASA-Langley, 1988 


